Job
- Level
- Senior
- Job Feld
- IT, Data, DevOps
- Anstellung
- Vollzeit
- Vertragsart
- Unbefristetes Dienstverhältnis
- Gehalt
- ab 67.400 € Brutto/Jahr
- Ort
- Wien
- Arbeitsmodell
- Hybrid, Onsite
Job Zusammenfassung
In dieser Rolle entwickelst du ML/AI-Systeme und orchestrierst LLMs mit Agenten-Frameworks, während du RAG implementierst, LLMOps etablierst und Evaluierungen durchführst, um die Performance und Kosten zu optimieren.
Job Technologien
Deine Rolle im Team
- End-to-end ownership of ML/AI/agentic use cases: framing to production.
- Implement MCP and orchestrate LLMs/tools with agent frameworks (LangChain, LlamaIndex, Semantic Kernel, OpenAI Assistants), including function calling, fallbacks, and guardrails.
- Build and optimize RAG; evaluate for precision/recall and latency.
- Establish LLMOps/MLOps (experiments, versioning, CI/CD, registries, monitoring, incident response) and ensure reliability, safety, and compliance (prompt-injection defenses, content filtering, policy, red teaming, quality gates).
- Run rigorous offline/online evaluations (backtests, time-series CV, A/B, shadow/canary), monitor drift/impact, and optimize performance/cost (latency, throughput, rate limits, batching, streaming, caching) with usage/cost dashboards.
- Interact with Business Partner to Define requirements.
Unsere Erwartungen an dich
Qualifikationen
- Expert Python skills; SQL/PySpark; Spark/Databricks and expertise in DS/ML/LLM.
- Hands-on with agent frameworks and tooling (LangChain, LlamaIndex, CrewAI or similar), prompt engineering, function/tool calling, and evaluation harnesses.
- RAG expertise: embeddings, vector stores, retrieval, and evaluation approaches.
- Ability to translate business requirements into production-grade technical solutions and to manage stakeholder relationships; fluent English required, German is an advantage.
Erfahrung
- 5+ years delivering ML/AI systems in production; experience in financial services is an asset.
- Practical experience with GenAI models and pipelines and agentic AI (architectures, planning, memory, tool use, multi-agent orchestration).
- LLMOps / MLOps experience: MLflow or similar, feature stores, data/prompt versioning, CI/CD (GitHub Actions, Jenkins), Docker, orchestration tools (Airflow, Prefect).
- Experience designing evaluation and validation frameworks: backtesting, out-of-sample testing, A/B, drift detection.