Job
- Level
- Junior
- Job Feld
- Data
- Anstellung
- Teilzeit
- Vertragsart
- Praktikum / Schulpraktikum
- Gehalt
- ab 2.700 € Brutto/Monat
- Ort
- Graz
- Arbeitsmodell
- Onsite
Job Zusammenfassung
In dieser Position analysierst du Messdaten aus hochpräzisen Instrumenten und entwickelst KI-gestützte Tools zur Mustererkennung. Deine Hauptaufgabe ist es, maschinelles Lernen anzuwenden, um Anomalien zu identifizieren und Expertenbewertungen zu simulieren.
Job Technologien
Deine Rolle im Team
- Analyze measurement data represented as x-y plots generated by high-precision analytical instruments.
- Identify material-specific patterns within the plots based on the shape, position, area, and extent of characteristic lines.
- Evaluate expert-driven interpretations of material patterns and derive a basis for the decision of the most powerful AI-method to be applied.
- Investigate the limitations of purely rule-based or automated analysis due to noise, slope variation, and non-ideal data characteristics.
- Develop AI-supported tools for pattern recognition in measurement results to mimic expert evaluation.
- Design and train machine learning models to detect and classify known material-specific signal patterns.
- Implement anomaly detection methods to distinguish and filter out non-genuine signal artifacts from real measurement data.
- Contribute to the creation of a robust, intelligent system for automated, expert-level interpretation of experimental results.
Unsere Erwartungen an dich
Qualifikationen
- Ongoing studies in Computer Science, Data Science, Physics, Electrical Engineering, or a related technical field.
- Solid understanding of AI methods and concepts, especially in pattern recognition and classification.
- Basic knowledge of signal processing and handling of experimental data.
- Proficiency in English; German is a plus.
- Analytical thinking and the ability to abstract expert decision-making into algorithmic models.
- Interest in working at the interface between experimental physics, data science, and AI.
- Independent, structured, and reliable working style.
Erfahrung
- Experience with Python and common ML frameworks (e.g., TensorFlow, PyTorch, scikit-learn).
Benefits
Work-Life-Integration
Gesundheit, Fitness & Fun
Mehr Netto
Essen & Trinken
Job Standorte
Themen mit denen du dich im Job beschäftigst
Das ist dein Arbeitgeber
Anton Paar GmbH
Wundschuh, Graz
Anton Paar entwickelt und produziert Präzisionsgeräte für die Laboratorien sowie hochgenaue Prozessmesstechnik. Außerdem fertigt Anton Paar kundenspezifische Automations- und Robotik-Lösungen an.
Description
- Gründungsjahr
- 2009
- Unternehmenstyp
- Etablierte Firma
- Arbeitsmodell
- Hybrid, Onsite
- Branche
- Industrie, Produktion
Dev Reviews
by devworkplaces.com
Gesamt
(2 Bewertungen)3.5
Engineering
2.8Career Growth
3.5Workingconditions
3.8Culture
3.8